Miniaturized Phonon Trap Timing Units for PNT of CubeSats

Completed Technology Project (2015 - 2018)

Project Introduction

This project develops a fast and accurate chip-scale timing unit (clock) that can improve the quantity and quality of data transmitted from small spacecraft. Based on a new generation of phonon traps/resonators that are both passively and actively compensated, the proposed approach tackles these technical challenges by developing a chip-scale all silicon integrated clock that has orders of magnitude better frequency stability, lower acceleration sensitivity, and higher speed compared to quartz-based clock.

Anticipated Benefits

A high speed and accurate clock vastly improves satellite data transmission rates. A clock with the proposed performance cannot be obtained from any other current or planned product with such small-size, low-weight, low-power, and low-cost, making it an ideal candidate for CubeSats. In addition to CubeSats, precision chip-scale clocks have application in many other DoD systems such as GPS-denied position, navigation, and timing (PNT) as well as in GPS itself.

Primary U.S. Work Locations and Key Partners

Miniaturized Phonon Trap Timing Units for PNT of CubeSats

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Target Destination	3

Small Spacecraft Technology

Miniaturized Phonon Trap Timing Units for PNT of CubeSats

Completed Technology Project (2015 - 2018)

Organizations Performing Work	Role	Туре	Location
University of Michigan- Ann Arbor	Lead Organization	Academia	Ann Arbor, Michigan
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
Maryland	Michigan

Project Transitions

0

October 2015: Project Start

June 2018: Closed out

Closeout Summary: Publications: https://ntrs.nasa.gov/archive/nasa/casi.ntr s.nasa.gov/20160013215.pdf https://digitalcommons.usu.edu/smallsat/2016/Po ster1/16/

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

University of Michigan-Ann Arbor

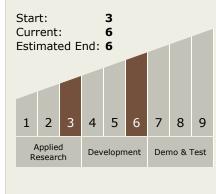
Responsible Program:

Small Spacecraft Technology

Project Management

Program Director:

Christopher E Baker


Program Manager:

Roger Hunter

Principal Investigator:

Mina Rais-zadeh

Technology Maturity (TRL)

Small Spacecraft Technology

Miniaturized Phonon Trap Timing Units for PNT of CubeSats

Completed Technology Project (2015 - 2018)

Target Destination	

